Ekológia (Bratislava)

## A FIRST ANALYSIS ON THE RELATIONSHIP BETWEEN FOREST SOIL QUALITY AND SPIDER (ARANEAE) COMMUNITIES OF FLEMISH FOREST STANDS

### DOMIR DE BAKKER<sup>1</sup>, JEAN-PIERRE MAELFAIT<sup>2,3</sup>, FREDERIK HENDRICKX<sup>2</sup>, DRIES VAN WAESBERGHE<sup>2</sup>, BRUNO DE VOS<sup>4</sup>, SOFIE THYS<sup>5</sup>, LUC DE BRUYN<sup>5</sup>

<sup>1</sup> Royal Belgian Institute of Natural Sciences, Department of Entomology, Vautierstraat 29, B-1000 Brussels, Belgium. Fax: +32 (0)2/627 41 32. E-mail: ddebakker@kbinirsnb.be

<sup>2</sup> Ghent University, Department of Biology, Laboratory of Ecology, Zoogeography and Nature Conservation, K.L Ledeganckstraat 35, B-9000 Ghent, Belgium. Fax: +32 (0)9/264 53 43, E-mail: jeanpierre.maelfait@rug.ac.be, frederick.hendrickx@rug.ac.be

<sup>3</sup> Institute of Nature Conservation, Kliniekstraat 25, B-1070 Brussels, Belgium. Fax: +32 (0)2/558 18 05. Email: jean-pierre.maelfait@instnat.be

<sup>4</sup> Institute of Forestry and Game Management, Gaverstraat 4, B-9600, Geraardsbergen, Belgium. E-mail: bruno.devos@lin.vlaanderen.be

<sup>5</sup> University of Antwerp (RUCA), Department of Evolutionary Biology, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. E-mail: debruyn@ruca.ua.ac.be, sofie.thys@rug.ac.be

Abstract

DE BAKKER D., MAELFAIT J.-P., HENDRICKX F., VAN WAESBERGHE D., DE VOS B., THYS S., DE BRUYN L.: A first analysis on the relationship between forest soil quality and spider (Araneae) communities of Flemish forest stands. In GAJDOŠ P., PEKÁR S. (eds): Proceedings of the 18th European Colloquium of Arachnology, Stará Lesná, 1999. Ekológia (Bratislava), Vol. 19, Supplement 3/ 2000, p. 45-58.

A project aiming at the development of a practical bio-indication system for evaluating forest soil quality was recently started up. The project is funded by the Flemish Forestry Administration responsible for the protected Flemish forests and is managed by the Institute for Forestry and Game Management (IBW). In the project the arthropod fauna of fifty forest stands distributed all over the Flemish Region was sampled by traps operative from spring 1997 till spring 1998. All these plots were also investigated in relation to the physical and chemical properties of their soil and litter layers. The variation of the composition of the spider communities of these stands is unclear when we compare it with the most important litter and soil parameters, but future investigations with more (structural) parameters will hopefully give a good explanation. On a subregional scale, in forests on the same soil type (loam), spider community composition seems to be determined by humidity and density of tree coverage. Spider species forwhich abundance correlates with these major environmental factors are candidate bio-indicators to monitor forest soil quality.

### Introduction

Flemish forests have been fragmented and degraded during several centuries. It is a safe assumption that, at the beginning of the Holocene, there was more woodland in Flanders than there is now. However, the history of woodlands in Flanders cannot be described by a simple model of linear decline, but is characterised by periods of regression and expansion (TACK et al., 1993; TACK, HERMY, 1998). Woodlands in Flanders can be described by three basic factors: deforestation events, changes in dimensions resulting in actual size, and exploitation history (DESENDER et al., 1999). Forest covers nowadays only about 8% of the total area in Flanders (HERMY, 1989). Communities of organisms bound to the forest are exposed to population dynamic and population genetic effects (e.g. DESENDER et al., 1999) due to fragmentation and a higher level of pollution derived from industry and agriculture (MAELFAIT, HENDRICKX, 1998). Therefore a project was started up in 1997 to evaluate forest soil quality by means of soil-living arthropods.

A selection of 50 forests was chosen from 400 sampling points of the forest-inventory grid of Flanders. These forests were chosen to represent the full range of forest types found in Flanders.

Different arthropod groups were included in this study: spiders (Araneae), pseudoscorpiones, harvestmen (Opiliones), ground beetles (Coleoptera: Carabidae), other beetle-families (Coleoptera: Chrysomelidae, Staphylinidae, Curculionidae,...), millipedes (Diplopoda), centipedes (Chilopoda), woodlice (Isopoda), certain families of flies (Diptera: Syrphidae, Empididae, Sphaeroceridae, Dolichopodidae, Phoridae,...), plant-parasitic nematodes (Nematoda) and springtails (Collembola).

### Material and methods

Pitfall traps were used in this project. These were glass vessels (9.5 cm diameter) placed into the ground so that the top of the trap was level with the soil surface. The traps were filled with a 4% formaldehyde solution in which we added a little detergent to reduce the surface tension. Also salt was added in the winter to prevent the solution from freezing. The advantages of this method can be summarised as follows (MAELFAIT, BAERT, 1975; MAELFAIT, 1996): (1) the method is standardised, inexpensive and labour-effective, (2) large numbers of animals are caught which allows statistical analysis, (3) the method is commonly used, which allows comparison with earlier sampling campaigns, (4) nocturnal and diurnal animals are caught, (5) the distribution of catches of males and females during short, continuous periods (every fortnight during a complete year cycle is reasonable) allows a good reconstruction of the life cycle of the most abundant species and (6) the catches of a certain species for the sampled habitats (see also OBRTEL, 1971; UETZ, UNZICKER, 1976). The disadvantage of the method is that catches of different species which occur in the same habitat cannot be used to calculate the relative density of these species. This is because species vary in level of activity, which affects their probability of capture (see also GREENLADE, 1964; LUFF, 1975; CURTIS, 1980; DESENDER, 1984; DESENDER, MAELFAIT, 1986).

We placed 3 pitfall traps in one row (approximately 3 meters apart). This gave a total of 150 pitfall traps emptied every fortnight (and every three weeks in the winter). Animals were sorted in the laboratory and preserved in 70% alcohol, to be identified later.

The location of the 50 forest stands is shown in Fig. 1. The list of names of the forests used in this figure is explained in Table 1. Spiders which were caught in May 1997 were identified for all 50 stations, (Table 2). For

8 stands in the region of the Flemish Ardens, the spider fauna was determined (for a graduate thesis) for the whole year cycle (VAN WAESBERGHE, 1998). Due to the large sorting effort, we can only present these preliminary results. In a future contribution, the results of the analysis of the complete data will be displayed. For determination of species we used LOCKET, MILLIDGE (1951, 1953), LOCKET et al. (1974) and ROBERTS (1987, 1998).

Furthermore, some parameters of the soil and litter layer were measured: acidity (pH), electrical conductivity, weight (DS) and the concentration of several mineral elements (Ca, N, S, P, Mg and K). Values for these parameters are shown in Table 3.

Ordinations and classifications were done with the programmes PC-ORD (McCUNE, MEFFORD, 1995) and CANOCO for Windows. Statistical tests were performed with the program STATISTICA.



Fig. 1. Position of the sampled forest stands in Flanders (o- forests on sandy loam /loam soil, z- forests on sandy soils). Numbers of forest stands are explained in Table 1.

### **Results and discussion**

The spiders captured during May 1997 were determined for all 50 forest stands (see Table 2). This revealed 9677 adult individuals belonging to 161 species. The complete year cycle of the 8 forest stands in the Flemish Ardens revealed 8 217 adult individuals belonging to 118 species (VAN WAESBERGHE, 1998). 45 species, which have been determined for the 50 forest stands and the 8 stands of the Flemish Ardens, belong to the Red List of spiders of Flanders (MAELFAIT et al., 1998).

The species used in the analysis were the most abundant ones. In the case of the 50 forest stands we took 50 individuals for analyses. This is equivalent to one capture in every plot during the month of May 1997. We have 30 species that fulfil this condition. The quantitative data of these most abundant species were transformed to percentage distributions per species over the 50 forest stands as a measure of habitat preference (within the available data). Such a transformation ensures that each species (used in the analysis) receives an equal weight. This explains why less abundant species (with strong random variation in numbers, and often also possible accidental immigrants from other environments) are not used in the analysis. The results are used in an indirect gradient-analysis (DCA= Detrended

| No. | Abbr. | Soil type  | Forest stand                    | Main tree species                          |  |  |  |  |  |
|-----|-------|------------|---------------------------------|--------------------------------------------|--|--|--|--|--|
| 1   | KAMP  | Sand       | Het Kamp                        | Pinus silvestris                           |  |  |  |  |  |
| 2   | BEER  | Sand       | Beerse Heide                    | Pinus silvestris                           |  |  |  |  |  |
| 3   | BRAS  | Sand       | Inslag                          | Pinus silvestris                           |  |  |  |  |  |
| 4   | WALE  | Sandy loam | Walenbos                        | Quercus robur, Q. petraea                  |  |  |  |  |  |
| 5   | KOOL  | Sandy loam | Koolhembos                      | Alnus glutinosa                            |  |  |  |  |  |
| 6   | MUIZ  | Sandy loam | Muizenbos                       | Fraxinus excelsior                         |  |  |  |  |  |
| 7   | EDIL  | Loam       | Bos Ter Rijst Edingen           | Fraxinus excelsior, Quercus robur          |  |  |  |  |  |
| 8   | BURR  | Loam       | Burreken                        | Quercus robur                              |  |  |  |  |  |
| 9   | KAL9  | Sand       | Withoefse Heide                 | Pinus silvestris                           |  |  |  |  |  |
| 10  | KA10  | Sand       | Withoefse Heide                 | Pinus silvestris                           |  |  |  |  |  |
| 11  | SEVE  | Sand       | Sevendonck                      | Fagus sylvatica                            |  |  |  |  |  |
| 12  | BINK  | Sandy loam | Kapellebos                      | Quercus robur                              |  |  |  |  |  |
| 13  | MELE  | Sandy loam | Meerdaalwoud level-plot         | Quercus robur                              |  |  |  |  |  |
| 14  | ZO14  | Loam       | Zoniën 14                       | Fagus sylvatica                            |  |  |  |  |  |
| 15  | HALL  | Loam       | Hallerbos                       | Fagus sylvatica                            |  |  |  |  |  |
| 16  | ZO16  | Loam       | Zoniën bestand 23               | Quercus robur, Carpinus betulus            |  |  |  |  |  |
| 17  | Z017  | Loam       | Zoniën bestand 24               | $\tilde{O}$ uercus robur. Carpinus betulus |  |  |  |  |  |
| 18  | ZO18  | Loam       | Zoniën bestand 25               | Fagus sylvatica                            |  |  |  |  |  |
| 19  | MEDR  | Sandy loam | Meerdaalwoud drie eiken         | <i>Betula</i> sp                           |  |  |  |  |  |
| 20  | MEKO  | Sandy loam | Meerdaalwoud grote koniinenpiin | Fagus sylvatica                            |  |  |  |  |  |
| 21  | BRDR  | Loam       | Brakelbos                       | Fagus sylvatica                            |  |  |  |  |  |
| 22  | RTTD  | Sandy loam | RTT-domein                      | Ouercus robur Betula sp                    |  |  |  |  |  |
| 23  | HE23  | Sand       | Piinven                         | Pinus silvestris                           |  |  |  |  |  |
| 23  | HEID  | Sand       | Heiderbos                       | Pinus silvestris                           |  |  |  |  |  |
| 25  | WIMM  | Sandy loam | Oude Mombeek                    | Populus x canadensis                       |  |  |  |  |  |
| 26  | GELL  | Sand       | Gellikerheide                   | Pinus silvestris                           |  |  |  |  |  |
| 27  | HECH  | Sand       | Heiwijk                         | Pinus silvestris                           |  |  |  |  |  |
| 28  | HE28  | Sand       | Piinven                         | Pinus silvestris                           |  |  |  |  |  |
| 29  | BR29  | Sand       | Grootbroek-Bree I               | Quercus robur Betula sp                    |  |  |  |  |  |
| 30  | BR30  | Sand       | Grootbroek Bree II              | Betula sp. Alnus alutinosa                 |  |  |  |  |  |
| 31  | LANK  | Sand       | L anklaarderbos                 | Betula sp., Huttas grantiosa               |  |  |  |  |  |
| 32  | PADD  | Sandy loam | Paddepoelebos                   | Ouercus robur Frazinus excelsior           |  |  |  |  |  |
| 33  | SERS  | Sandy loam | Zandputten                      | Quercus robur                              |  |  |  |  |  |
| 34  | KENI  | Sand       | Kenisherg-Kruisherg             | Dinus silvestris                           |  |  |  |  |  |
| 35  | GONA  | Sandy loam | Aelmoeseneie I                  | Quercus robur Fagus sylvatica              |  |  |  |  |  |
| 36  | GONB  | Sandy loam | Aelmoeseneie II                 | Fravinus excelsior                         |  |  |  |  |  |
| 37  | BUGG  | L oam      | Buggenhouthos                   | Fagus sylvatica                            |  |  |  |  |  |
| 38  | NEI7  | Loam       | Neigembos - bestand 7           | Fagus sylvatica                            |  |  |  |  |  |
| 30  | NE7R  | Loam       | Neigembos - bestand 7           | Batula sp                                  |  |  |  |  |  |
| 40  | PARI  | Loam       | Parikahos (Parika)              | Populus x canadansis                       |  |  |  |  |  |
| 41  | KLUI  | Loam       | Kluisbos                        | Fagus subvatica                            |  |  |  |  |  |
| 42  | LEEN  | Sandy loam | Hat Lean                        | Quargus robur                              |  |  |  |  |  |
| 43  | SCNA  | L oam      | Bos Terrijst Schorisse          | Fraginus avcalsion Alnus alutinosa         |  |  |  |  |  |
| 44  | RASP  | Loam       | Rasnaillehos                    | Quercus rubra Castanea sativa              |  |  |  |  |  |
| 45  | DRON  | Sandy loam | Drongengoed                     | Eagus sylvatica                            |  |  |  |  |  |
| 45  | WIII  | Sandy loam | Wijnendalehos                   | r ugus sylvalica<br>Fagus sylvatica        |  |  |  |  |  |
| 40  | HOUT  | Sandy loam | Houthulsthos                    | agus syivanca<br>Quarcus robur             |  |  |  |  |  |
| 47  | NIEU  | Sandy loam | Nieuwenhoven                    | Quercus robur Facus minatica               |  |  |  |  |  |
| 40  | PUIC  | Sandy loam | Vorte bossen                    | Quercur robur, rugus sylvalica             |  |  |  |  |  |
| 49  | LELL  | Sandy loan | Hallakatalbas                   | Quercus rubra, Frazinus excelsior          |  |  |  |  |  |
| 50  | HELL  | Sandy Ioam | neneketelbos                    | Quercus robur, Acer pseudoplatanus         |  |  |  |  |  |

T a b l e 1. List of sampled forest stands with number, abbreviation, soil type on which the forest is situated, name and dominant tree species occurring in the stand. Forests in bold are the 8 forests with a complete dataset.

| T a b l e 2. Number of species caught in May 1997 for all 50 forest st | ands. |
|------------------------------------------------------------------------|-------|
|                                                                        |       |

| Species                          | No. | Species                           | No.  |
|----------------------------------|-----|-----------------------------------|------|
| AMAUROBIIDAE                     |     | Euophrys petrensis C. L. K.       | 2    |
| Amaurobius fenestralis (STRO.)   | 1   | Evarcha falcata (CL.)             | 1    |
| DICTYNIDAE                       |     | Marpissa muscosa (CL.)            | 2    |
| Cicurina cicur (FABR.)           | 3   | Neon reticulatus (BL.)            | 11   |
| Lathys humilis (BL.)             | 2   | LYCOSIDAE                         |      |
| DYSDERIDAE                       |     | Alopecosa cuneata (CL.)           | 1    |
| Dysdera erythrina (WALC.)        | 3   | Alopecosa pulverulenta (CL.)      | 10   |
| GNAPHOSIDAE                      |     | Hygrolycosa rubrofasciata (OHLE.) | 3    |
| Haplodrassus silvestris (BL.)    | 74  | Pardosa amentata (CL.)            | 50   |
| Haplodrassus umbratilis (L. K.)  | 1   | Pardosa lugubris (WALC.)          | 306  |
| Micaria fulgens (WALC.)          | 6   | Pardosa prativaga (L. K.)         | 2    |
| Micaria pulicaria (SUND.)        | 5   | Pardosa pullata (CL.)             | 2    |
| Phaeocedus braccatus (L. K.)     | 1   | Pardosa saltans TÖPHOF.           | 402  |
| Zelotes latreillei (SIMON)       | 1   | Pirata hygrophilus TH.            | 3106 |
| Zelotes subterraneus (C. L. K.)  | 31  | Pirata latitans (BL.)             | 11   |
| CLUBIONIDAE                      |     | Pirata piraticus (CL.)            | 1    |
| Clubiona brevipes BL.            | 1   | Pirata uliginosus (TH.)           | 98   |
| Clubiona compta C. L. K.         | 11  | Trochosa spinipalpis (O. PC.)     | 1    |
| Clubiona corticalis (WALC.)      | 1   | Trochosa terricola TH.            | 146  |
| Clubiona lutescens WEST.         | 9   | Xerolycosa nemoralis (WEST.)      | 4    |
| Clubiona pallidula (CL.)         | 2   | PISAURIDAE                        |      |
| Clubiona reclusa O. PC.          | 4   | Pisaura mirabilis (CL.)           | 2    |
| Clubiona terrestris WEST.        | 40  | AGELENIDAE                        |      |
| LIOCRANIDAE                      |     | Coelotes inermis (L. K.)          | 50   |
| Agroeca brunnea (BL.)            | 126 | Coelotes terrestris (WIDER)       | 20   |
| Apostenus fuscus WEST.           | 43  | Histopona torpida (C. L. K.)      | 136  |
| Phrurolithus festivus (C. L. K.) | 7   | Tegenaria picta SIMON             | 258  |
| Scotina celans (BL.)             | 1   | Tegenaria silvestris L. K.        | 2    |
| ZORIDAE                          |     | HAHNIIDAE                         |      |
| Zora spinimana (SUND.)           | 43  | Antistea elegans (BL.)            | 1    |
| ANYPHAENIDAE                     |     | Hahnia helveola SIMON             | 8    |
| Anyphaena accentuata (WALC.)     | 20  | Hahnia montana (BL.)              | 36   |
| THOMISIDAE                       |     | Hahnia nava (BL.)                 | 1    |
| Coriarachne depressa (C. L. K.)  | 2   | Hahnia pusilla C. L. K.           | 109  |
| Ozyptila praticola (C. L. K.)    | 23  | MIMETIDAE                         |      |
| Ozyptila trux (BL.)              | 149 | <i>Ero furcata</i> (VILL.)        | 2    |
| Xysticus audax (SCH.)            | 1   | THERIDIIDAE                       |      |
| Xysticus erraticus (BL.)         | 1   | Anelosimus vittatus (C. L. K.)    | 1    |
| <i>Xysticus lanio</i> C. L. K.   | 40  | Crustulina guttata (WIDER)        | 2    |
| Xysticus ulmi (HAHN)             | 1   | Enoplognatha thoracica (HAHN)     | 23   |
| PHILODROMIDAE                    |     | Episinus angulatus (BL.)          | 2    |
| Philodromus aureolus (CL.)       | 1   | Euryopis flavomaculata (C. L. K.) | 81   |
| Philodromus dispar WALC.         | 3   | Robertus lividus (BL.)            | 120  |
| SALTICIDAE                       |     | Theridion bimaculatum (L.)        | 3    |
| Ballus chalybeius (WALC.)        | 1   | Theridion pallens BL.             | 4    |
| Euophrys frontalis (WALC.)       | 22  | Theridion varians HAHN            | 1    |

T a b l e 2. (cont.)

| Species                                                      | No.      |
|--------------------------------------------------------------|----------|
| THERIDIOSOMATIDAE                                            |          |
| Theridiosoma gemmosum (L. K.)                                | 4        |
| METIDAE                                                      |          |
| Metellina mengei (BL.)                                       | 17       |
| TETRAGNATHIDAE                                               |          |
| Pachygnatha clercki SUND.                                    | 23       |
| Pachygnatha degeeri SUND.                                    | 2        |
| Pachygnatha listeri SUND.                                    | 180      |
| ARANEIDAE                                                    | _        |
| Cercidia prominens (WEST.)                                   | 5        |
| Cyclosa conica (PALL.)                                       | 1        |
| LINYPHIIDAE (ERIGONINAE)                                     | 7        |
| Ceratinella brevis (WIDER)                                   | 57       |
| Dismodiaus hifrons (D. ).                                    | 57<br>10 |
| Dismoaicus Difrons (BL.)                                     | 10       |
| Dicymbium higrum (BL.)                                       | 22       |
| Dicymbium libitile (BL.)<br>Diplocephalus latifrons (O. PC.) | 33<br>7  |
| Diplocephalus nicinus (BL)                                   | 1329     |
| Frigone atra (BL)                                            | 3        |
| Erigone dentinalnis (WIDER)                                  | 5        |
| Erigonella hiemalis (BL)                                     | 2        |
| Glyphesis servulus (SIMON)                                   | 14       |
| Gnathonarium dentatum (WIDER)                                | 1        |
| Gonatium rubellum (BL.)                                      | 20       |
| Gongylidiellum latebricola (O. PC.)                          | 8        |
| Gongylidiellum vivum (O. PC.)                                | 3        |
| Gongylidium rufipes (SUND.)                                  | 87       |
| Hypomma cornutum (BL.)                                       | 1        |
| Leptorhoptrum robustum (WEST.)                               | 1        |
| Maso sundevalli (WEST.)                                      | 7        |
| Micrargus herbigradus (BL.)                                  | 84       |
| Minyriolus pusillus (WIDER)                                  | 36       |
| Monocephalus fuscipes (BL.)                                  | 31       |
| Oedothorax fuscus (BL.)                                      | 1        |
| Oedothorax gibbosus (BL.)                                    | 4        |
| Oedothorax retusus (WEST.)                                   | 2        |
| Pocadicnemis pumila (BL.)                                    | 182      |
| Saloca diceros (O. PC.)                                      | 8        |
| <i>Tapinocyba insecta</i> (L. K.)                            | 25       |
| Tapinocyba praecox (U. PC.)                                  | 1        |
| HISO Vagans (BL.)<br>Walekongoria gourringta DI              | 2<br>76  |
| Walekongoria alticons (DENIS)                                | 70       |
| Walekonaoria atrotibialis (O P C)                            | 13       |
| Walckengeria corniculars (O. PC.)                            | 58       |
| waickenderia corniculans (O. PC.)                            | 20       |

| Species                         | No.     |
|---------------------------------|---------|
| Walckenaeria cucullata (C. L. K | L) 37   |
| Walckenaeria cuspidata (BL.)    | 2       |
| Walckenaeria dysderoïdes (WID   | ER) 32  |
| Walckenaeria furcillata (MENG   | E) 19   |
| Walckenaeria mitrata (MENGE)    | 2       |
| Walckenaeria monoceros (WIDE    | ER) 1   |
| Walckenaeria nudipalpis (WEST   | .) 6    |
| Walckenaeria obtusa BL.         | 9       |
| Walckenaeria unicornis O. PC    | . 1     |
| (LINYPHIINAE)                   |         |
| Agyneta ramosa JACK.            | 170     |
| Agyneta subtilis (O. PC.)       | 18      |
| Bathyphantes nigrinus (WEST.)   | 31      |
| Bathyphantes parvulus (WEST.)   | 8       |
| Centromerita concinna (TH.)     | 1       |
| Centromerus aequalis (WEST.)    | 44      |
| Centromerus dilutus (O. PC.)    | 6       |
| Centromerus leruthi FAGE 1933   | 2       |
| Centromerus pabulator (O. PC    | .) 1    |
| Centromerus prudens (O. PC.)    | 5       |
| Centromerus serratus (O. PC.)   | 5       |
| Centromerus sylvaticus (BL.)    | 18      |
| Diplostyla concolor (WIDER)     | 127     |
| Lepthyphantes cristatus (MENGH  | E) 36   |
| Lepthyphantes ericaeus (BL.)    | 4       |
| Lepthyphantes flavipes (BL.)    | 226     |
| Lepthyphantes mengei KULC.      | 37      |
| Lepthyphantes pallidus (O. PC   | .) 42   |
| Lepthyphantes tenebricola (WID  | DER) 21 |
| Lepthyphantes tenuis (BL.)      | 4       |
| Lepthyphantes zimmermanni BE    | RT. 70  |
| Linyphia hortensis SUND.        | 37      |
| Macrargus rufus (WIDER)         | 155     |
| Meioneta saxatilis (BL.)        | 13      |
| Microneta viaria (BL.)          | 268     |
| Nereine clathrata (SUND.)       | 119     |
| Nereine montana (CL.)           | 4       |
| Nereine peltata (WIDER)         | 3       |
| Poeciloneta globosa (WIDER)     | 4       |
| Porrnomma convexum (WEST.)      | 10      |
| Porrhomma egeria SIMON          | 10      |
| Porrhomma painaum JACK.         |         |
| Sagriston abnormis (PL)         | 20      |
| Sintula cornigara (DL)          | 20      |
| Total                           | 9677    |



Fig. 2. DCA-ordination of the 50 forest stands on the basis of the most abundant spider species caught in may 1997 (left) and distribution of corresponding indicator spider species (right).

Correspondence Analysis; TER BRAAK, 1988, JONGMAN et al., 1995) and a TWINSPAN (Two Way Indicator Species Analysis; HILL, 1979) which performs a two way-divisive and hierarchical classification where, at every level, the original group of samples and species are divided on the basis of indicator species. For the 8 forest stands of the Flemish Ardens, the number of individuals, to be incorporated into the analysis, was taken at 33. 44 species fulfilled this condition.

# Indirect gradient analysis of the stands (DCA) on the basis of the most abundant spider species

The results of the DCA-analysis for the 50 forest stands are shown in Fig. 2 (axis 1 and 2). The eigenvalues of these axes are respectively 0.655 and 0.578 and the total variance explained by the first two axes is 26.7%. The following axes (axes 3 and 4) have eigenvalues which are lower than 0.3 and further increase in variance is minimal. The forests with a more sandy soil (with pine (*Pinus sylvestris*) as the main tree species) are found at the right. We also draw attention to a concentration of deciduous forests in the lower left corner. It consists mainly of more humid forests on loam /sandy loam soils (e.g. Koolhembos, Bos ter Rijst Schorisse, Wimmertingen, Parikebos, Vorte Bossen and Muizenbos). If we look at the corresponding species then we note the following indicator species for the forests on sandy soils: *Pardosa lugubris* (WALCKENAER), *Trochosa terricola* THORELL, *Pocadicnemis pumila* (BLACKWALL), *Euryopis flavomaculata* (C. L. KOCH) and *Pirata uliginosus* (THORELL). These are all species which prefer open, dry habitats. For deciduous forests we note the following indicator species. *Ozyptila trux* (BLACKWALL), *Pirata* 

| Forest | Litter - parameters |            |      |            |            | Soil - parameters |            |       |              |     |      |            |       |       |       |       |
|--------|---------------------|------------|------|------------|------------|-------------------|------------|-------|--------------|-----|------|------------|-------|-------|-------|-------|
| Stand  | DS                  | . 17       | Ν    | Р          | K          | Ca                | Mg         | S     | DS           |     | Ν    | Р          | K     | Ca    | Mg    | S     |
|        | (%)                 | рН         | (%)  | (ppm)      | (ppm)      | (ppm)             | (ppm)      | (ppm) | (%)          | pН  | (%)  | (ppm)      | (ppm) | (ppm) | (ppm) | (ppm) |
| KAMP   | 44.6                | 3.6        | 1.29 | 372        | 152        | 1702              | 268        | 2565  | 89.0         | 3.8 | 0.07 | 77         | 241   | 571   | 109   | 68    |
| BEER   | 58.7                | 3.6        | 1.16 | 324        | 196        | 2101              | 391        | 1188  | 90.1         | 3.6 | 0.14 | 146        | 314   | 562   | 162   | 280   |
| BRAS   | 54.2                | 3.5        | 1.40 | 399        | 174        | 2606              | 348        | 2279  | 90.8         | 4.0 | 0.08 | 46         | 208   | 426   | 105   | 107   |
| WALE   | 36.9                | 4.6        | 1.74 | 596        | 1158       | 8383              | 1009       | 2454  | 51.8         | 3.7 | 0.89 | 495        | 2898  | 1599  | 1815  | 1094  |
| KOOL   | 33.6                | 5.8        | 1.78 | 588        | 1265       | 6714              | 1543       | 1575  | 45.9         | 4.1 | 0.97 | 759        | 2102  | 3682  | 2480  | 1493  |
| MUIZ   | 56.3                | 5.0        | 1.06 | 386        | 1789       | 14884             | 1068       | 916   | 83.5         | 6.1 | 0.24 | 285        | 2025  | 6686  | 2034  | 483   |
| EDIL   | 40.5                | 5.5        | 1.18 | 656        | 2334       | 7472              | 1841       | 867   | 310          | 4.1 | 0.21 | 536        | 2433  | 1546  | 2192  | 368   |
| BURR   | 40.3                | 4.1        | 1.33 | 529        | 2640       | 13048             | 2605       | 1317  | 67.5         | 4.2 | 0.37 | 358        | 5626  | 2775  | 4862  | 437   |
| KAL9   | 48.3                | 3.7        | 1.47 | 424        | 147        | 3035              | 410        | 1667  | 87.5         | 4.0 | 0.11 | 29         | 153   | 250   | 84    | 99    |
| KA10   | 39.9                | 3.7        | 1.43 | 434        | 202        | 2936              | 480        | 1440  | 85.4         | 3.9 | 0.06 | 42         | 156   | 405   | 87    | 141   |
| SEVE   | 31.0                | 3.9        | 1.91 | 559        | 529        | 2954              | 571        | 1860  | 64.3         | 3.8 | 0.27 | 193        | 634   | 695   | 680   | 787   |
| BINK   | 45.1                | 4.1        | 1.62 | 652        | 864        | 6041              | 961        | 1511  | 76.0         | 3.8 | 0.19 | 195        | 1826  | 1068  | 1439  | 308   |
| MELE   | 46.4                | 4.7        | 1.57 | 704        | 1373       | 8094              | 1181       | 1316  | 71.9         | 3.9 | 0.52 | 626        | 2166  | 1816  | 2003  | 728   |
| ZO14   | 36.5                | 4.2        | 1.66 | 615        | 481        | 6567              | 805        | 1965  | 67.0         | 3.8 | 0.36 | 717        | 1695  | 1712  | 1376  | 664   |
| HALL   | 34.5                | 4.4        | 1.79 | 655        | 790        | 7302              | 972        | 1526  | 72.0         | 3.8 | 0.21 | 617        | 2248  | 1633  | 1686  | 515   |
| ZO16   | 44.1                | 3.9        | 1.54 | 608        | 552        | 6015              | 803        | 1519  | 63.7         | 3.6 | 0.38 | 645        | 1692  | 1698  | 1244  | 542   |
| ZO17   | 44.5                | 4.2        | 1.59 | 632        | 1049       | 6174              | 1113       | 1295  | 65.4         | 3.5 | 0.51 | 730        | 1952  | 1698  | 1499  | 737   |
| ZO18   | 45.2                | 4.3        | 1.59 | 618        | 657        | 6576              | 897        | 1385  | 75.1         | 3.8 | 0.28 | 445        | 1824  | 1553  | 1343  | 384   |
| MEDR   | 55.7                | 3.9        | 0.96 | 300        | 637        | 2599              | 724        | 792   | 84.3         | 3.6 | 0.20 | 201        | 959   | 175   | 771   | 360   |
| MEKO   | 57.5                | 4.3        | 1.50 | 502        | 704        | 5244              | 909        | 10/6  | 78.2         | 3.7 | 0.67 | 345        | 1486  | 1376  | 1173  | 511   |
| BRDR   | 28.3                | 3.9        | 1.69 | 427        | 637        | 4853              | 681        | 2016  | 67.9         | 3.7 | 0.36 | 249        | 4862  | 1038  | 3666  | 527   |
| RTTD   | 41.4                | 3.6        | 1.35 | 456        | 598        | 2698              | 725        | 1909  | 65.8         | 3.6 | 0.43 | 482        | 1647  | 1314  | 1250  | 693   |
| HE23   | 43.9                | 3.6        | 1.29 | 417        | 165        | 2927              | 401        | 1426  | 89.2         | 3.7 | 0.09 | 182        | 249   | 329   | 160   | 197   |
| HEID   | 53.5                | 3.8        | 1.36 | 398        | 275        | 3091              | 394        | 14/6  | 86.5         | 3.7 | 0.08 | 116        | 306   | 353   | 58    | 240   |
| WIMM   | 28.8                | 2.7        | 1.33 | 1216       | 3985       | 19228             | 2255       | 11//  | 62.0         | 5.9 | 0.50 | 930        | 5135  | 6943  | 4681  | 908   |
| GELL   | 46.7                | 3.9        | 1.28 | 367        | 288        | 2122              | 465        | 1449  | 85.2         | 3.9 | 0.09 | 91         | 286   | 521   | 150   | 222   |
| HECH   | 34.0                | 3.1        | 1.62 | 380        | 362        | 3121              | 335        | 14/1  | /8.1         | 3.0 | 0.49 | 221        | 342   | 220   | 214   | 469   |
| HE28   | 47.4                | 3.5        | 1.35 | 436        | 188        | 3150              | 393        | 158/  | 92.0         | 3./ | 0.08 | 112        | 248   | 332   | 133   | 197   |
| BR29   | 35.9                | 4.1        | 2.12 | 658        | 411        | 88/6              | 682<br>711 | 3383  | 58.0         | 4.1 | 0.79 | 489        | 1502  | 3256  | 822   | 2110  |
| DK30   | 29.5                | 4.1        | 1.25 | 426        | J04<br>694 | 9501              | /11<br>011 | 1940  | 33.2<br>00 2 | 4.4 | 0.70 | 355        | 260   | 4255  | 202   | 2909  |
|        | 32.5                | 4.5        | 1.33 | 430        | 084<br>517 | 4404<br>5207      | 811<br>645 | 1323  | 88.3<br>70.0 | 4.1 | 0.15 | 114<br>216 | 560   | 407   | 202   | 250   |
| CEDC   | 27.2                | 2.0        | 1.95 | 206        | 626        | 1626              | 04J<br>924 | 1291  | 79.0         | 3.1 | 0.01 | 276        | 1219  | 1242  | 029   | 580   |
| SEKS   | 51.5                | 5.0<br>4.2 | 1.39 | 590        | 020        | 4030              | 804<br>801 | 1301  | /1.1<br>02 7 | 2.0 | 0.55 | 452        | 1210  | 259   | 2800  | 501   |
| GONA   | 37.5                | 3.8        | 1.17 | 421        | 1017       | 3877              | 077        | 1860  | 53.7<br>68 5 | 3.5 | 0.00 | 318        | 2672  | 1080  | 2112  | 440   |
| GONR   | 40.1                | 3.0        | 1 30 | 421<br>695 | 5575       | 10519             | 1//3       | 1026  | 79.0         | 12  | 0.29 | 372        | 2760  | 1009  | 28/3  | 327   |
| BUGG   | 40.1                | 3.6        | 1.37 | 355        | 477        | 2648              | 550        | 1465  | 79.8         | 3.5 | 0.20 | 343        | 1294  | 1025  | 1011  | 397   |
| NEI7   | 46.0                | 3.0        | 1.20 | 361        | 1518       | 2040              | 1204       | 1301  | 7/3          | 3.5 | 0.25 | 347        | 303/  | 636   | 2967  | 430   |
| NE7B   | 51.1                | 41         | 1.01 | 341        | 1212       | 2974              | 1194       | 1381  | 73.9         | 37  | 0.23 | 324        | 3020  | 961   | 2299  | 396   |
| PARI   | 40.9                | 63         | 1.00 | 787        | 3040       | 18183             | 1792       | 1045  | 74 1         | 65  | 0.20 | 716        | 3226  | 7803  | 3178  | 841   |
| KLUI   | 42.3                | 3.8        | 1 31 | 491        | 798        | 3053              | 751        | 1981  | 64.2         | 3.6 | 0.39 | 518        | 2359  | 1295  | 1845  | 489   |
| LEEN   | 28.8                | 3.5        | 1 73 | 353        | 306        | 3609              | 602        | 2713  | 70.2         | 3.4 | 0.30 | 358        | 1549  | 1183  | 1149  | 530   |
| SCNA   | 47.0                | 5.3        | 1.36 | 655        | 1650       | 13427             | 1632       | 1261  | 70.2         | 3.9 | 0.37 | 403        | 3131  | 1931  | 2658  | 477   |
| RASP   | 38.6                | 3.8        | 1.06 | 423        | 1184       | 3140              | 1291       | 878   | 69.6         | 3.8 | 0.21 | 430        | 2617  | 1481  | 2230  | 383   |
| DRON   | 33.3                | 3.7        | 1.62 | 344        | 1060       | 5751              | 1286       | 1423  | 75.2         | 3.7 | 0.22 | 200        | 4364  | 649   | 3855  | 380   |
| WIII   | 36.1                | 3.4        | 1.81 | 301        | 134        | 1923              | 447        | 2599  | 78.8         | 3.5 | 0.18 | 299        | 1275  | 761   | 1006  | 330   |
| HOUT   | 29.1                | 3.4        | 1.54 | 332        | 736        | 3763              | 812        | 1393  | 64.7         | 3.4 | 0.62 | 376        | 1486  | 1198  | 1111  | 580   |
| NIEU   | 33.9                | 3.8        | 1.70 | 432        | 386        | 4772              | 637        | 1314  | 85.0         | 3.8 | 0.07 | 145        | 918   | 720   | 704   | 156   |
| RUIG   | 57.3                | 4.4        | 1.14 | 386        | 1240       | 4260              | 1584       | 1028  | 69.1         | 4.0 | 0.43 | 410        | 2226  | 3412  | 3002  | 623   |
| HELL   | 35.1                | 3.8        | 1.61 | 430        | 639        | 3799              | 922        | 1623  | 66.6         | 3.5 | 0.35 | 265        | 2284  | 1214  | 1616  | 734   |
|        | 55.1                | 5.0        | 1.01 | -50        | 057        | 5177              | 144        | 1023  | 00.0         | 5.5 | 0.55 | 205        | 2204  | 1214  | 1010  | 137   |

T a b l e 3. Values of the physico-chemical parameters of litter and soil for the 50 forest stands (DS- percent of total weight of soil sample that remains after drying at 105 degrees Celsius, concentrations are expressed in parts per million).



Axis 1



Fig. 3. DCA-ordination of the 8 forest stands of the Flemish Ardens based on the most abundantly caught spider species during a complete year cycle (1997-1998): distribution of the forest stands (above) and distribution of the specific indicator species (below).

hygrophilus THORELL, Ceratinella scabrosa (O. P.-CAMBRIDGE), Gongylidium rufipes (SUNDEVALL) and Diplostyla concolor (WIDER). These are all species which prefer more humid environments. At the top we see large and/or old forests (Zoniënwoud, Hallerbos and Meerdaalwoud) with beech (Fagus sylvatica) as the dominant tree species. The indicator species for these forests are Walckenaeria corniculans (O. P.-CAMBRIDGE), Tegenaria picta SIMON, Macrargus rufus (WIDER) and Histopona torpida (C. L. KOCH). These are species which mostly prefer beech-woods with a large quantity of dead wood. We have the

impression that, according to the first axis, soil texture is the most important parameter. In the future it would be useful to do research on deciduous forests with the same vegetation type and soil type and compare them with other results to reach a better conclusion on the reason why these forests are separated or grouped together from the rest. The second axis is probably a humid-dry gradient: dry forest stands mainly on top (e.g. Meerdaalwoud and Zoniënwoud) and more humid environments beneath (e.g. Koolhembos, Sevendonck and Bree), each associated with typical indicator species. Further analysis on a broader range of structural and other parameters should explain which parameter is most important for the division of the forest stands.

TWINSPAN-analysis yielded the same picture with the same indicator species. Habitat preferences of most of these indicator species, which appeared in the DCA-ordination as well as in the TWINSPAN-analysis, are similar to those generally found in the literature. Detailed information about distribution, phenology and habitat preferences of these species are discussed in ALDERWEIRELDT (1985), SEYS (1985), SEGERS (1986), DE KNIJF (1993), DE BAKKER (1995), VAN WAESBERGHE (1998), DE COCK (1999) and D'HERT (1999).

When we look at the indicator species for dry forest stands on sandy soils, we note that almost all of them are not really typical (stenotopic) woodland species. They are, on the contrary, all species which prefer open, dry and exposed habitats like heathland and all kinds of grassland (e.g. E. flavomaculata, T. terricola and P. uliginosus). Indicator species which belong to forest stands on sandy loam /loam soils (e.g. Coelotes terrestris (WIDER), *H. torpida*, ...) are more typical (and stenotopic) woodland species in Belgium. Therefore it is difficult to interpretate the results obtained from the DCA-ordination. The difference between the two types of forest stands (sandy versus sandy loam /loam soils) can be the result of other reasons than those we have investigated here. Soils in the Campine Region (which are mostly dry, sandy and nutrient poor) were mostly planted with pine in the past, probably because this species is best adapted to this kind of soil and because pine wood was also frequently used in the mining industry. Pine forest stands have a more open vegetation, the soils are more exposed to the sun, are therefore warmer and all this resembles conditions of open habitats. This could explain the occurrence of several species that are not really bound to forests for their life-cycle. Comparison of these results with ordinations based on the most important litter and soil parameters strengthens our earlier findings. The ordination obtained based on the soil parameters seems to be similar to the one we derived on the basis of the most abundant species, but both ordinations (soil and litter) have very low eigenvalues and can therefore not be interpreted as being responsible for the difference. A Mann-Whitney U test between the litter and soil parameters of these two kinds of forest types confirmed the results already obtained, i.e. no significant difference between the two types of forest stands based on these parameters. The same result was obtained when using a (more formal) direct Canonical Correspondence Analysis (CCA) between litter and soil parameters and species frequencies: very low eigenvalues prohibits us to use even this ordination to explain the observed differences.

It can be concluded that the presented parameters are insufficient to explain the difference between the two kinds of forest stands. Other parameters, which are not available up to now, should give a clear picture of why these forests are separated. It is important in the future that we also investigate deciduous forest stands in the Campine region on sandy, nutrient poor soils to explain the difference between these forests and those on nutrient rich sandy loam /loamy soils. We also remark that these results are based on only one month of data and that in the future, with a complete set of data, we will be able to make conclusions about the division of the stands and find suitable bio-indicators.

We can conclude that different spider communities are present in forests on nutrientpoor sandy soils (with mainly pine and birch (*Betula* sp.) as dominant tree species) and forests on nutrient-rich loam/sandy loam soils (oak (*Quercus robur/Q. petraea*), beech and mixed deciduous forest stands). This is also reflected in different main tree species and other vegetation which cannot be investigated up to now. It is important to emphasise that we are not dealing with a zoogeographical phenomenon because the species used in the analyses are the most abundant ones and are very common in the whole region.

### Analysis of 8 forest stands from the region of the Flemish Ardens

Forests on the same soil type (loam) were compared with each other for the complete set of data (whole year cycle) with the most abundant species. The DCA-ordination of the 8 forest stands and distribution of the most important indicator species are shown in Fig. 3. The axes have eigenvalues of respectively 0.554 (axis 1) and 0.123 (axis 2) with a total explained variation of 35% (for both axes). The following axes (axis 3 and 4) have very eigenvalues so that further explained variation is minimal.

We see that Parikebos, Bos terrijst Edingen and Bos ter Rijst Schorisse are on the right while the other forest stands Neigembos, Brakelbos and Burreken are on the left. Indicator species on the right are Robertus lividus (BLACKWALL), Pachygnatha listeri SUNDEVALL, Saloca diceros (O. P.-CAMBRIDGE), Dicymbium tibiale (BLACKWALL) and Tapinocyba insecta (L. KOCH). These are species which prefer more humid environments (with a very thin litter layer) according to most literature. Detailed information about most of these species can be also found in the above-mentioned literature. Indicator species on the left are Pardosa saltans TöpFer-HOFMANN, Centromerus serratus (O. P.-CAMBRIDGE), Apostenus fuscus Westring and Lepthyphantes flavipes (BLACKWALL). These are species which (according the literature) prefer dry forest stands with a very well developed litter layer. The difference along the first axis could thus be explained as a humid-dry gradient. The division based on the second axis is probably due to an open or closed type of vegetation (with corresponding main tree species). Neigembos 7bis (birch stand) and Neigembos 7 (beech stand) are the two extremes of this axis. That is explained by the fact that the beech stand is a lot more open (and it was also situated on a south directed slope) and receives more sunlight than the birch stand that has a more closed vegetation. Both stands were only a few meters apart. This is also shown in the indicator species. Species which appears more in the beech stand are P. saltans, T. picta and Xysticus lanio C. L. KOCH (species which prefer open, dry habitats) and indicator species for the birch site are C. serratus, Hahnia helveola SIMON and Centromerus aequalis (WESTRING) (which can also be found in dry forest stands with a more dense vegetation). The results of the TWINSPAN-analysis confirms these results (VAN WAESBERGHE, 1998).

These results were compared with ordinations based on the most important litter and soil parameters. The ordination obtained based on the litter parameters seems to be similar to the one we derived on the basis of the most abundant species, but both ordinations (soil and litter) have very low eigenvalues and can therefore not be interpreted as being responsible for the difference. The same conclusion can thus be made as for the 50 forest stands. A Mann-Whitney U test between the litter and soil parameters of these 8 forest stands was done. Most significantly different values were seen within the litter parameters while only two parameters of the soil seemed to be significantly different, but these results were not sufficient to explain the difference between the forest stands. The analysis of other parameters (structural, vegetational,...) could not be done for the same reason as for the 50 forest stands (see above). The same results were obtained when using a (more formal) direct Canonical Correspondence Analysis (CCA) between litter and soil parameters and species frequencies: very low eigenvalues also prevented us from using this ordination to explain the observed differences. So differences in distribution of the forest stands in the ordination were mainly based on known habitat preferences of indicator species. Future investigations on other (probably more important) parameters should provide a more profound explanation of the observed differences.

As a conclusion the ordination of the spider communities that revealed the important character of a humid-dry gradient (along the first axis) is similar with the ordination of the litter parameters. This means that spider community composition on a subregional scale, with forests on the same soil type, correlates strongly with the abiotic characteristics of the litter layer, but because ordination based on the characteristics of the litter and soil layer could not give sufficient explanation (due to low eigenvalues) these conclusions still remain hypothetical and should be discussed more in detail in future when more information of other parameters becomes available.

### Conclusions

We can conclude that the composition of soil-inhabiting spider communities on a Flemish scale seems to differ according to the soil type on which the forest is situated. They differ from nutrient-poor sandy and nutrient-richer sandy loam/loam soils. Other parameters which need further envestigation than these obtained from soil and litter seem to be responsible for the difference in species abundance. On a subregional scale, in forests which are situated on the same soil type, spider communities seem to vary mainly with the chemical and physical properties of the litter layer. That means that they are good indicators for the rate of litter breakdown. These first results indicate that, in the future, probably we will have to create two separate indicator-systems for the two most important soil types in Flanders. It will also be possible to evaluate forest soil quality on the basis of the spider communities if several types of forests on a same soil type are investigated. The low eigenvalues of certain analyses contradict these results. In the future the same analyses will be performed with a more complete set of parameters (structural, biotic and abiotic characters) to give a clearer

understanding of why these forests separate and to give a better indication of soil quality and the use of spiders as bio-indicators in forests.

### Acknowledgements

I (D. De Bakker) thank the Administration responsible for the Flemish Forests (AMINAL) for the great opportunity to work in the forests of Flanders. Konjev Desender, Dries Bonte, Shirley Gurdebeke and Bart Neirynck are acknowledged for all their help in this large project. Also acknowledged are the forest-engineers and technicians of the Institute of Forestry and Game Management (IBW) for their enormous help (providing abiotic data concerning the soil and litter layer, maps,...) and especially Ir. Kris Vandekerkhove and Ir. Diego Van Den Meersschaut. This project was funded by the Flemish Government responsible for the Flemish Forests (AMINAL, no. B&G/15/96 and continuing in project no. B&G/29/98).

#### References

ALDERWEIRELDT, M., 1985: Verspreiding en ecologie van de Belgische Lycosidae. M. Sc. Thesis, Ghent University.

CURTIS, D., 1980: Pitfalls in spider community studies (Arachnida, Araneae). J. Arachnol., 8, p. 271-280.

- DE BAKKER, D., 1995: Enkele ecologische aspecten van de spinnenfauna (Araneae) van het bos t' Ename. M. Sc. Thesis, Ghent University.
- DE COCK, K., 1999: Verspreiding en populatie-ecologie van de zustersoorten *Pardosa saltans* Töpfer-Hofmann & Von Helversen, 1990 en *P. lugubris* (Walckenaer, 1802) (Araneae, Lycosidae). M. Sc. Thesis, Ghent University.
- DE KNIJF, G., 1993: Aspecten van de ecologie van de spinnenfauna (Araneae) van het Walenbos te Tielt-Winge (Vlaams-Brabant). M. Sc. Thesis, Ghent University.

DESENDER, K., 1984: De betekenis en het gebruik van bodemvallen voor faunistisch-oecologisch onderzoek van bodemoppervlakte-aktieve ongewervelden. Phegea, 12, 3, p. 85-94.

- DESENDER, K., ERVYNCK, A., TACK, G., 1999: Beetle diversity and historical ecology of woodlands in Flanders. Belg. J. Zool., 129, 1, p. 139-156.
- DESENDER, K., MAELFAIT, J.-P., 1986: Pitfall trapping within enclosures: a method for estimating relationship between he abundances of coexisting carabid species (Coleoptera: Carabidae). Holarctic Ecology, 9, p. 245-250.

D'HERT, D., 1999: De spinnenfauna (Araneae) van een aantal Vlaamse Bossen. M. Sc. Thesis Ghent University.

GREENSLADE, P.J.M., 1964: Pitfall trapping as a method for studying populations of Carabidae (Coleoptera). J. Anim. Ecol., *33*, p. 301-310.

- HERMY, M., 1989: Bosgebieden. In HERMY, M. (ed.): Natuurbeheer. Van de Wiele, Stichting Leefmilieu, Natuurreservaten en het Instituut voor Natuurbehoud, Brugge, 224 pp.
- HILL, M.O., 1979: TWINSPAN- A FORTRAN Program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Ecology and Systematics, Cornell University ed. Ithaca, New York.
- JONGMAN, R.H.G., TER BRAAK, C.J.F., VAN TONGEREN, F.R., 1995: Data analysis in community and landscape ecology. University Press, Cambridge, 299 pp.

LOCKET, G.H., MILLIDGE, A.F., 1951: British spiders. Vol. I. Ray Society, London, 310 pp.

- LOCKET, G.H., MILLIDGE, A.F., 1953: British spiders. Vol. II. Ray Society, London, 449 pp.
- LOCKET, G.H., MILLIDGE, A.F., MERRETT, P., 1974: British spiders. Vol. III. Ray Society, London, 314 pp.
- LUFF, M.L., 1975: Some features influencing the efficiency of pitfall traps. Oecologia, 19, p. 345-357.
- MAELFAIT, J.-P., 1996: Spiders as bioindicators. In VAN STRAALEN, N.M., KRIVOLUTSKY, D.M. (eds): Bioindicator Systems for Soil Pollution. Kluwer Academic Publishers, Dordrecht, p. 165-178.
- MAELFAIT, J.-P., BAERT, L., 1975: Contribution to the knowledge of the arachno-and entomofauna of different woodhabitats. Part I : sampled habitats, theoretical study of the pitfall method and survey of the captured taxa. Biol. Jb. Dodonea, 46, p. 179-196.

- MAELFAIT, J.-P., BAERT, L., JANSSEN, M., ALDERWEIRELDT, M., 1998: A Red list for the spiders of Flanders. Bull. Kon. Belg. Inst. Nat., 68, p. 131-142.
- MAELFAIT, J.-P., HENDRICKX, F., 1998: Spiders as bio-indicators of anthropogenic stress in natural and seminatural habitats in Flanders (Belgium). In SELDEN, P.A. (ed.): Proceedings of the 17<sup>th</sup> European Colloquium of Arachnology. Edingburgh, 1997. BAS, Burnham Beeches, p. 293-299.
- MCCUNE, B., MEFFORD, M.J., 1995: PC-ORD. Multivariate Analysis of Ecological Data, version 3.03. MJM Software Design, Gleneden Beach, Oregon, USA.
- OBRTEL, R., 1971: Number of pitfall traps in relation to the structure of the catch of soil surface Coleoptera. Acta ent. Bohemoslav., 68, p. 300-309.
- ROBERTS, M.J., 1987: The spiders of Great Britain and Ireland. Vol. II: Linyphiidae and Check list. Harley Books, 204 pp.

ROBERTS, M.J., 1998: Spinnengids. Tirion, Baarn, 379 pp.

- SEGERS, H., 1986: Oecologische studie van de spinnenfauna (Araneae) van het Zoniënwoud. M. Sc. Thesis, Ghent University.
- SEYS, J., 1985: De spinnenfauna (Arachnida: Araneae) van beekbegeleidende graslanden. M. Sc. Thesis, Ghent University.
- TACK, G., HERMY, M., 1998: Historical ecology of woodlands in Flanders. In KIRKBY, K.J., WATKINS, C. (eds): The ecological history of European forests. CAB International, Oxon, p. 283-292.
- TACK, G., VAN DER BREMT, P., HERMY, M., 1993: Bossen van Vlaanderen. Een historische ecologie. Davidsfonds, Leuven, 320 pp.
- TER BRAAK, C.J.F., 1988: CANOCO-a FORTRAN program for canonical community ordination by (partial) (detrended) (canonical) correspondence analysis, principal components analysis and redundancy analysis (version 2.1 and update notes version 3.1). Agricultural Mathematics Group ed. Wageningen, The Netherlands.
- UETZ, G.W., UNZICKER, J.D., 1976: Pitfall trapping in ecological studies of wandering spiders. J. Arachnol., 3, p. 101-111.
- VAN WAESBERGHE, D., 1998: De spinnenfauna (Araneae) van een aantal bossen in de Vlaamse Ardennen. M. Sc. Thesis University Ghent.