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INTRODUCTION 
Has the orb-web a monophyletic or a poly-
phyletic origin? This old question still remains 
unanswered (for a review of the history of the 
controversy, see Coddington 1986). Many have 
argued in favour of a monophyletic origin, 
mainly because most orb-webs share several 
key features: all orb-webs have a sticky spiral 
placed on radial threads which converge at a 
central location, the hub; typical orb-webs are 
highly regular structures which are more or 
less circular and planar; during the construc-
tion of orb-webs, an auxiliary spiral is built; etc. 
(Thorell 1886; Wiehle 1931; Coddington 1986). 
However, all these features may be or may not 
be an indication of a common origin. The 
physical constraints of webs have to be ana-
lysed to reveal whether these features may be 
an adaptation to the function of the finished 
web, or an adaptation to the web construction 

process, or whether orb-webs share them be-
cause of common ancestry. The aim of the pre-
sent article is to discuss the features of the well-
known orb-web, using the well known ecribel-
late orb-web of Araneus diadematus Clerck as a 
model. Only those features that cannot be 
shown to be adaptive to the function or the 
construction of the web may serve as isolated 
evidence for a common origin.  
 
THE BASIC SHAPE OF THE ORB-WEB 
Spiders make their living by catching insects. 
To catch flying insects, many spiders have 
evolved the ability to build traps in the air;  the 
orb-web is one kind of such aerial traps. Since 
natural selection favours structures that are 
efficient, orb-webs should cover the largest 
area possible with a limited amount of mater-
ial, which is best achieved with a planar web 
(Wainwright et al. 1976; Opell 1999a; Zschokke 
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& Vollrath 2000). As insects tend to fly more or 
less horizontally in most habitats, vertical webs 
are best suited to intercept their flight paths 
(Chacón & Eberhard 1980; Eberhard 1989). Ver-
tical webs have the additional advantage that 
insects struggling to get away and dropping 
down are held back by a lower part of the web, 
whereas they completely drop out of hori-
zontal webs (Eberhard 1990b). Fig. 1a shows 
such a hypothetical, vertical web, suspended 
between two bushes or trees for support.  

Alternative: In some habitats, for instance 
above water surfaces, insects primarily fly up 
and down. Spiders specialised for these habi-
tats, e.g. Tetragnatha spp., consequently build 
horizontal webs. Cribellate orb-weavers (e.g. 
Uloborus spp.) also build horizontal orb-webs. 
However, their sticky silk and web engineer-
ing differ quite strongly from that of the 
ecribellates (Peters 1987; Köhler & Vollrath 
1995; Opell 1997) which makes direct com-
parisons difficult.  

Traps must not be recognised as such by the 

potential prey. This can be achieved either by 
camouflage or by making the web invisible; 
orb-webs try to be invisible (Rypstra 1982; 
Craig 1986). Since the silk threads themselves 
are not transparent, they must be as thin as 
possible and there must be as few threads as 
possible. Under these constraints, a large area 
is most efficiently covered using a regular 
meshwork, similar to a fishing net (von Frisch 
1974; Thompson 1992) (Fig. 1b).  
       When an insect hits the web, the web must 
fulfil two physical requirements: it must stop 
and retain the insect (Eberhard 1990b). In other 
words: prey should neither fly through the 
web, nor should it bounce back as it would 
from a trampoline. A solution to this problem 
is to have two different, specially adapted 
kinds of thread (Lin et al. 1995). To stop the 
prey - especially the large ones - and to keep 
the sticky silk in place, strong  and rather stiff 
threads are used. To retain the prey, flexible 
sticky silk is used which can absorb the energy 
of the struggling prey without breaking 

Fig. 1. Hypothetical webs. (a) planar vertical web with undefined structure; (b) web with regular mesh-
work (two alternative meshworks are shown); (c) radial structure that allows quick alerting of the spider; 
(d) radial structure with loops of sticky silk; (e) same as d) but with increasing distance between sticky silk 
loops; (f) basic hypothetical 'ideal' web.  
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(Eberhard 1986; Opell 1999b). In orb-webs, the 
two kinds of threads are placed in a grid, with 
one kind of thread running in one direction 
and the other kind of thread placed perpen-
dicularly on them. The mesh size of this grid 
differs between spider species and also changes 
with spider size, spider condition, environ-
mental condition and with the available prey 
spectrum (Wiehle 1927; Uetz et al. 1978; 
Sandoval 1994; Vollrath et al. 1997; Zschokke 
1997; Schneider & Vollrath 1998).  

Alternative: Some spiders have separated the 
two functions completely; with a tangle of so- 
called knock-down threads to stop the prey at 
the top and - spatially separated - a sheet be-
low the knock-down threads onto which the 
insects fall and can then be captured by the 
spider. These kinds of webs are built by age-
lenid, linyphiid spiders and by Cyrtophora spp. 
(Bristowe 1958; Lubin 1973). At the same time, 
these webs - together with theridiid space 
webs - usually last longer (typically several 
weeks) than orb-webs (which last a few days at 
most). Even though their construction requires 
more silk than that of orb-webs, they are there-
fore probably as economical as orb-webs.  

Once an insect has hit the web, the spider 
wants to be quickly alerted to its presence be-
fore it escapes. This is best achieved with di-
rect, rather stiff threads running from the dif-
ferent areas of the web to the spider (Masters 
1984; Eberhard 1990b). In other words, a struc-
ture with radial threads is best suited (Fig. 1c). 
In orb-webs, these radial threads are also the 
ones that stop the prey and keep the sticky silk 
in place. To obtain a regular meshwork based 
on a radial structure, the sticky threads to re-
tain the prey are best placed in concentric cir-
cles on the radial threads (Fig. 1d).  
 
ADDITIONAL CONSIDERATIONS 
The structure shown in Figure 1d shows strong 
similarities to an orb-web. It has non-sticky, 
stiff radii joining up at one point at the centre 
of the web, the hub, and loops of sticky, flexible 
silk. However, orb-webs are more sophisticated 
than this simple structure.  

       The two functions of stopping and retaining 
the prey need to be matched in all areas of the 
web, otherwise the spider might risk that a 
large insect can break through the web if there 
are not enough stopping threads, or that an 
insect may bounce back if there are not enough 
retaining threads (Eberhard 1981). Since the 
radii which stop the prey are further apart at 
the periphery of the web, the loops with sticky 
silk also have to be spaced further apart at the 
periphery of the web. Peters (1939; 1947; 1954) 
even proposed the 'segment rule' which sug-
gests that the distances between the loops of 
the sticky silk are proportional to the distances 
between the radii. This precise relationship has 
since been disputed (ap Rhisiart & Vollrath 
1994). However, the basic relationship that the 
sticky silk is spaced further apart where the 
radii are further apart is true (Witt 1952; ap 
Rhisiart & Vollrath 1994; Heiling & Herberstein 
1998; own observations).  

Alternative: To keep the distance between 
neighbouring radii approximately equal, 
some spiders (e.g. Nephila spp.) have adopted 
the strategy of using subsidiary radii (Fig. 2). 

Fig. 2. Part of Nephila web below the hub. The 
vertical threads are the radii. The straight horizon-
tal threads are part of the sticky spiral and the hori-
zonal zigzag threads are part of the auxiliary spiral.  
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Subsidiary radii are those radii that do not 
start at the hub but somewhere further out 
(Zschokke 1999). In webs with subsidiary ra-
dii, the distance between the sticky silk loops 
is consequently roughly the same in the 
whole web; there is no increase from the cen-
tre to the periphery as it is in other orb-webs 
(Peters 1953). 

When an insect has hit the web, the spider 
must be able to reach it quickly, before it es-
capes. Since spiders can run faster downwards 
than upwards, the area that they can cover 
within a certain time is larger below the hub 
than above the hub. Consequently, orb-webs 
have a top-down asymmetry, with the larger 
part below the hub (Masters & Moffat 1983; ap 
Rhisiart & Vollrath 1994; Herberstein & Heiling 
1999). The top-down asymmetry requires sev-
eral modifications. In the first place, the radii 
above the hub are shorter than those below the 

hub (Krieger 1992; ap Rhisiart & Vollrath 1994). 
Additionally, the spiders adjust the shape of 
the sticky silk loops (Zschokke 1993) and insert 
additional sticky silk threads in the lower half 
of the web (Mayer 1952; Witt et al. 1968). The 
angles between radii are smaller in the lower 
part of the web (Peters 1937; Tilquin 1942; 
Mayer 1952; Krieger 1992), presumably to ad-
just towards the ideal length of sticky silk be-
tween two radii. This seems to be more rele-
vant than the weight of the spider sitting on the 
hub, which one could expect to require more 
radii in the upper part of the web (Langer 
1969). Fig. 1f shows a hypothetical web with all 
the features mentioned so far.  
       Sitting in the centre of the web is advanta-
geous for catching prey. However, sitting in the 
centre also has disadvantages. Since the spider 
can easily be seen there, it may attract preda-
tors or deter prey. Many spiders therefore hide 

Fig. 3. Similarity between supports of high speed railway overhead contact lines (a) and of secondary 
frames in orb-webs (b). a: contact wire/capture area; b: droppers/outer part of radii; c: auxiliary catenary 
(Y-dropper)/secondary frame (Y-frame); d: messenger wire (main catenary)/primary frame; e: cantilever 
and mast/anchor thread and environmental support (e.g. branch of bush); f: steady arm (lateral stabiliser). 
In both cases, there is no direct connection between the rigid structure (e) and the supported parts (a).  
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in a retreat somewhere at the edge of the web 
during the day (Tilquin 1942). Some spiders (e.
g. Zygiella spp.) even have a specialised signal 
thread running from the centre of the web to 
the retreat. Unfortunately, when an insect has 
hit the web, the spider loses valuable time be-
cause it first has to rush to the hub, and only 
when it has arrived there it can locate and 
reach the prey. To minimise these costs, the 
spider builds the web in such a way that the 
hub is close to the retreat (Le Guelte 1967).  

Alternative: An alternative to hiding is cam-
ouflage. Some spiders (e.g. Cyclosa spp.)  
achieve camouflage by adding a stabilimen-
tum that looks like a twig (Rovner 1976; Neet 
1990). Other spiders (e.g. Arachnura spp.) 
achieve camouflage by making themselves 
look like something completely different, for 
instance like a small dead leaf.  

The tensions in each loop of the sticky silk pro-
duce a centripetal force on the radii, resulting 
in an increase in tension along each radius 
from the centre of the web to the periphery 
(Wirth & Barth 1992). A few species (e.g. Zilla 
diodia) adapt the structure of their radii accord-
ingly by building radii that are single stranded 
near the centre of the web (where the tensions 
are lower) and double stranded at the periph-
ery of the web (Zschokke 2000).  
      On top of all these considerations, the orb-
web should be able to withstand environ-
mental stresses, e.g. wind or impact of large 
insects. The connection between the web and 
the anchor threads (e in Fig. 3b) which are at-
tached to the rather rigid environment must 
therefore be very flexible; in particular, the spi-
der should avoid connecting a radius directly 
to an anchor thread. Humans face similar prob-
lems when they build railway overhead lines. 
Rigid masts support the contact line which 
needs to be flexible to avoid temporary contact 
loss resulting in electric arcs. For high-speed 
railways, this problem has been solved with so-
called auxiliary catenaries (Bauer & Kießling 
1986), a solution which is remarkably similar to 
the secondary frames employed by spiders 
(Fig. 3).  

Alternative: Some spiders (e.g. Micrathena 
triangularis and some Uloborus species), 
achieve a flexible connection between anchor 
threads and web without a secondary frame. 
They avoid connecting a radius to the frame 
near an anchor thread by enlarging the dis-
tance between neighbouring radii around the 
anchor threads (Fig. 4).  
 

CONSTRAINTS OF THE CONSTRUCTION 
Despite their ingenuity, orb-webs do not last 
forever, since the sticky silk dries out or glues 
together, threads are torn or debris falls into 
the web (Wiehle 1927; Opell 1999a). Araneid 
orb-weavers therefore rebuild their webs usu-
ally every night or every other night (Wiehle 
1927; Breed et al. 1964; own observations). This 
requires the construction of the web to be eco-
nomical and therefore several deviations from 
the ‘ideal’ orb-web outlined above can be 
found. First, the sticky thread is laid down in a 
spiral and not in circles. Since the spider turns 
around to insert additional sticky threads in the 
lower half of the web, the spiral is not a con-

Fig. 4. Web of Micrathena triangularis. Note the 
larger distance between two neighbouring radii 
near the anchor points (arrows). Redrawn, with 
permission, after Eberhard (1986).  
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tinuous one. Comparing the angles between 
neighbouring radii, some angles are considera-
bly larger or smaller than their neighbouring 
angles. The most divergent angles are usually 
the ones around the radii that the spider con-
structed last, where the spider was constrained 
by the previously laid radii (Mayer 1952).  
 
CONCLUSION 
All features of the macro-structure of the orb-
webs shown can be explained by mechanical 
and biological constraints. The fact that most 
orb-webs share these features can therefore not 
be taken as a proof of a monophyletic origin of 
the orb-web. It also provides no support for the 
hypothesis of dual or multiple origin of the 
orb-web. To learn more about the phylogeny of 
the orb-webs, comparative studies on the web-
construction behaviour, especially the early 
stages (Eberhard 1982; 1990a; 1996; Zschokke & 
Vollrath 1995) and on the fine structure of the 
webs (Jackson 1971; Benjamin et al. 2002) are 
needed.  
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